

## **Getting Started with Procurement & Managing and Analyzing Data**

Module 1 in the "Procurement Strategies for K-12 Facility and Energy Managers" Course January 4, 2024



# Today's Agenda



- Welcome and Introductions
- Learning Objectives
- Getting Started with Procurement
  - Summary of Pre-Survey Responses
  - Introduction to Procurement Strategies
    - Key Terms & Approaches
    - Integration of Organizational Energy/GHG Goals
    - Discussion Examples: Developing Scopes of Work for Energy Projects
  - Guest Speaker: Odette Mucha, DOE SCEP
- Managing and Analyzing Data
  - Types of energy management software
  - Use Cases
  - Procurement
  - Guest Speaker: Lyndl Schuster, River Trails School District 26
- Key Resources
- Conclusion: Assignment and Q&A

### **Course Instructors**





Susan Elliott



John Jameson



Adam Agalloco

## **Today's Presenters**



#### Susan Elliott and John Jameson

Susan Elliott is a Climate Planning Consultant at ICF with expertise in supporting state and local government efforts on climate change mitigation and decarbonization. Susan brings over 10 years of program management experience in local government, working with organizational partners to identify and develop projects and programs to reduce greenhouse gas emissions within the municipal footprint and community. Her work has included working with cross-organizational partners to assess projects, identify opportunities to advance multiple program priorities, and evaluate and recommend funding/financing and process pathways for implementation.

John has over 10 years supporting local governments and education institutions in building energy efficiency. He has supported numerous local, state and federal energy programs including DOE's Better Buildings Initiative where he's worked with DOE national laboratories to provide technical assistance to partners across the country. He currently oversees EPA's ENERGY STAR building certification program.



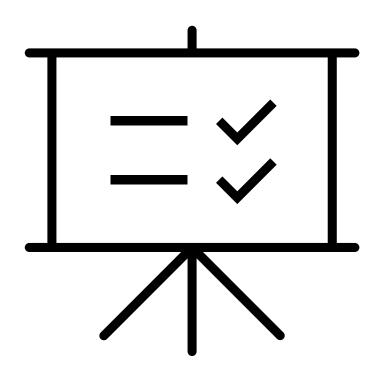


# Overview of the Procurement Strategies Course



January 04, 2024:
 Getting Started + Managing and Analyzing Data

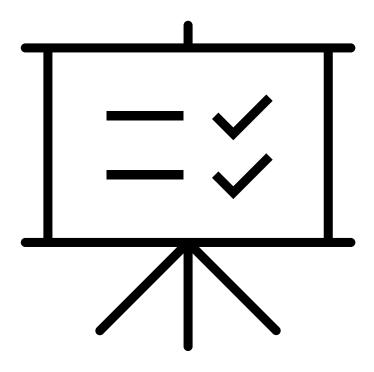



- January 11, 2024:
   Energy Procurement + Energy Project Procurement
- January 18, 2024:
   Financing Approaches + Applications to Achieve Your Goals
- January 23, 2024 (3PM 4PM Eastern):
   Procurement Strategies Cohort Meeting

Sessions will take place from 3:00 – 5:00 PM (Eastern) unless otherwise noted

# **Learning Objectives**




- In Part 1 of today's session, attendees will:
  - Develop an understanding of the basics of energy service procurement, including terminology and the technical aspects of relevant systems and equipment
  - Learn how to define organizational energy and/or greenhouse gas (GHG) emissions goals and combine them into an overall energy procurement strategy and program for a K-12 district
  - Learn about developing scopes of work for energy projects



# **Learning Objectives**



- In Part 2 of today's session, attendees will:
  - Learn how to characterize different types of energy management systems
  - Learn the role it can play in helping achieve and maintain energy savings
  - Learn how to procure it





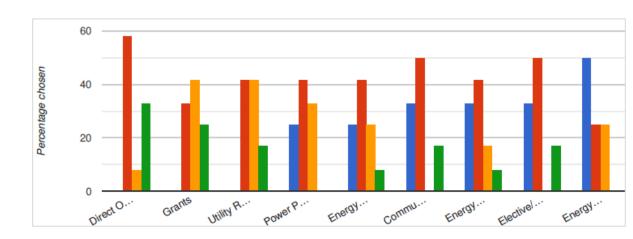
Part 1 Getting Started with Procurement



## **Project Focuses**

- Solar
  - Behind the meter owned/operated
  - Large-scale rooftop
- GSHP expensive, low ROI, high environmental benefits
- Operational changes to produce energy & cost savings (ex. air flow and air unit temperatures)
- Inflation Reduction Act (IRA) opportunities




## Most interested in

- Energy Saving Performance Contracts (ESPCs)
- Section 179D, Elective Pay
- Utility rebates and power procurement
- Power Purchase Agreements (PPAs)
- Experience with subsidies, grants, incentives
- RFP Creation
- All strategies



## **Strategy Familiarity**

- Limited familiarity across all strategies (red)
- Completely unfamiliar responses (blue)
  - Power Purchase Agreements
  - Energy Savings/Energy Performance Contracts
  - Community Solar
  - Elective/Direct Pay & Transferability
  - Energy Efficiency Commercial Building Deduction (179D)
- Familiarity (orange)
  - Grants
  - Utility Rebates and Incentives
  - Power Purchase Agreements
  - Energy Efficiency Commercial Building Deduction (179D)
  - Energy Savings/Energy Performance Contracts
- Some strong familiarity across most strategies (green)



Completely unfamiliar

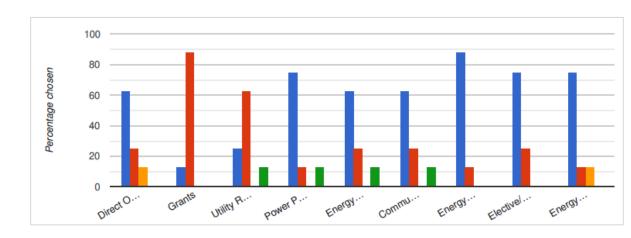
Limitedly familiar

Familiar

Strongly familiar



## **Experience with Strategy Deployment**


#### **Most Experience**

- Grants
- Utility Rebates and Incentives

#### **Least Experience**

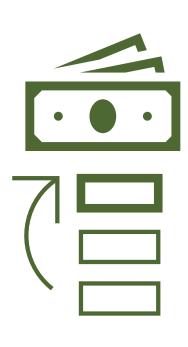
- Energy/Energy Savings Performance Contracts
- Elective/Direct Pay & Transferability
- Energy Efficiency Commercial Building Deduction (179D)
- Power Purchase Agreements
- Community Solar
- Direct Organizational Capital (Tax Revenue, Bonds, Loans)

- Do not have experience with this strategy
- Have deployed this strategy
- Have selected and not yet deployed this strategy
- Have fully evaluated and discarded this strategy for deployment



# Introduction to Procurement Strategies

# **Key Terms**




- Capital Stack
- Tax Credits (including elective/direct pay and transferability)
- Debt Service (loans and bonds)
- Bond Rating
- Utility Rate Schedule
- Energy as a Service (EaaS)
- Power Purchase Agreements (PPAs)
- Energy Savings Performance Contracts (ESPCs)

# Introduction to Procurement Strategies



**Procurement Strategies** are a collection of approaches to make obtaining project funding more manageable and more feasible. They can include:



- Funding
  - Direct organizational capital (tax revenue, bonds, loans, leases)
  - Grants
- Reducing project costs
  - Tax and other credits
  - Utility rebates and incentives
  - Scale efficiencies
- Contract structures

(aligning payment with savings)

- Power Purchase Agreements (PPAs)
- Energy as a Service (EaaS)
- Energy Savings Performance Contracts (ESPCs)

# Integration of Organizational Energy/GHG Goals



- What are your organization's needs and goals?
  - Minimize project unit costs
  - Maximize GHG emissions reductions
  - Maximize savings
  - Achieve greater scale quicker
  - Reduce impacts on staff workloads
  - Fit project costs within existing expenditures

# Discussion: Developing Scopes of Work for Energy Projects

# Guest Speaker

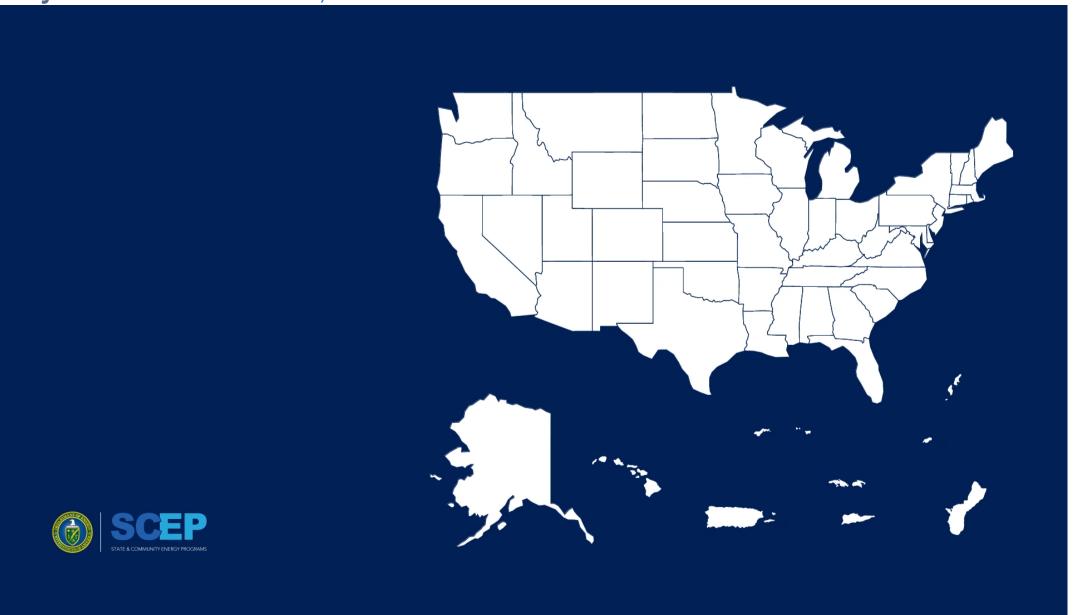
## **Today's Guest Speaker**



## **Odette Mucha**

Technical Assistance Lead for the

Energy Efficiency and Conservation Block Grant Program


US Department of Energy State and Community Programs Office

Odette.mucha@hq.doe.gov



# The Energy Efficiency and Conservation Block Grant (EECBG) Program Directly Invests in Over 2,700 Communities Across U.S.





# Eligible state, local, and Tribal governments can now apply for \$430M in funding from the Energy Efficiency and Conservation Block Grant (EECBG) Program!

Eligible entities can use flexible EECBG Program funding for projects and programs that







**Cut Carbon Emissions** 

Improve Energy Efficiency

Reduce Energy Use



States can apply for EECBG Program formula funding through July 2023.

Local governments and Tribes can apply through January 2024.

# **Opportunities to Collaborate with EECBG**



#### Most of your cities/counties are eligible for EECBG Grants (2023 allocations)

- Baltimore City, MD: \$549,550
- Bennington, VT: \$75,560
- Brevard County, FL: \$340,910
- Charlottesville, VA: \$76,840
- Cleveland, OH: \$386,700
- Decatur, GA EECBG Competitive award: \$400,000
- Detroit, MI: \$582,030
- Grafton County, NH: \$78,280
- Inglewood, CA: \$153,020
- Irvington, NJ: \$116760
- Jackson County, MS: \$79,900

- Kansas City, KS \$197,600
- Lansing, MI: \$168,150
- McCracken County, KY: \$77,450
- Milwaukee, WI: \$522,370
- Nenana, AK. EECBG Competitive award: \$900,000
- Orange County, FL \$807,430
- Salt Lake County, UT: \$80,390
- San Antonio, TX: \$1,220,460
- Spokane, WA: \$255,210
- Walworth County, WI: \$78,630
- Weslaco, TX: \$76,470

# **EECBG Blueprints and Cohorts**



### Energy Efficiency and Conservation Block Grant Program Blueprints

Office of State and Community Energy Programs

#### **Blueprint Topics**

- 1. Comprehensive Energy Planning
- 2. Energy Efficiency
  - Energy Assessments and Building Upgrades,
  - Energy Savings Performance Contracts,
  - Building Electrification Campaign,
  - Building Performance Standards & Stretch Codes

#### 3. Renewables

- Solar PPAs and Direct Ownership,
- Solarize Campaign,
- Community Solar,
- Renewable Resource Planning for (rural and tribal) communities

#### 4. Transportation

- Electric Vehicles for Fleets & Fleet Electrification,
- EV Charging Infrastructure for the Community
- 5. Financing Solutions Revolving Loan Funds
- 6. Workforce Development

# Blueprint Cohorts will meet virtually on an ongoing basis to:

- Ask and answer questions
- Provide updates
- Share experiences
- Hear from experts
- Troubleshoot common areas of concern
- Participate in tool demonstrations
- Share success stories

Sign up here to join a Blueprint Cohort: <a href="https://forms.office.com/g/Phr3DWKiwJ">https://forms.office.com/g/Phr3DWKiwJ</a>

#### **See the Blueprint Resources here**:

https://www.energy.gov/scep/energy-efficiency-andconservation-block-grant-program-blueprints



### PAST EVENTS

- Justice 40
- Community Engagement Best Practices

#### **Tool Trainings**

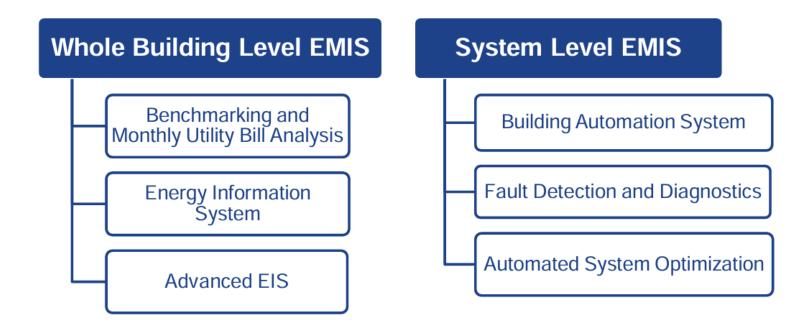
- Solar PV Tools: System Advisor Model (SAM) and PV Watts
- RE-Opt Energy Integration and Optimization Tool
- State and Local Planning for Energy
- Low-Income Energy Affordability (LEAD)

Find slides, worksheets and the webinar recordings here: <a href="https://www.energy.gov/scep/energy-efficiency-and-conservation-block-grant-program-blueprints">https://www.energy.gov/scep/energy-efficiency-and-conservation-block-grant-program-blueprints</a>

## **UPCOMING EVENTS**

- Federal Funding Roundtable
  January 18<sup>th</sup> from 2-3:30 PM ET. Click here to register.
  - Hear from the DOE representatives on the DOE's \$8.8 Billion Home Energy Rebates Program, Building Energy Codes Technical Assistance Program, Energy Saving Performance Contracting Campaign, and more!
- Financial and Development Pathways Training
   January 25<sup>th</sup> from 2-3:30 PM ET. <u>Click here to register</u>.
  - Learn more about financing strategies for a range of clean energy initiatives. Beginning with a brief overview of project development and financing, it will address public and private funding sources, ownership models, and key considerations to help practitioners choose among different approaches.
- Financing Upfront Capital and Revenue February 8<sup>th</sup> from 2-3:30 pm ET. Click here to register.
  - This training will provide a basic introduction to the options for financing a clean energy project as well as for recovering the investment and generating revenue from the project.
- ResStock<sup>™</sup> Analysis Tool Training
   February 22<sup>nd</sup> from 2-3:30 p.m. ET Register here.
  - ResStock is an analysis tool that can help users identify which residential building improvements save the most money and energy.




# Part 2 Managing and Analyzing Data

# Beyond Benchmarking: Energy Management Information Systems



# **Energy Management Information Systems**

EMIS are a broad family of tools to monitor, analyze, and control building energy use and system performance



<sup>\*</sup> The boundaries can be fuzzy; some tools cross categories, e.g., energy information systems with FDD and benchmarking capabilities

J. Granderson, Lawrence Berkeley National Laboratory

# **Types of Energy Management Information Systems**



TABLE 1: KEY CHARACTERISTICS OF EMIS TECHNOLOGIES

|                       | Monthly Data<br>Analytics                                                                                                      | EIS                                                                                                                     | FDD                                                                                                                                                        | ASO                                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Primary Applications  | Utility bill reconciliation, energy use and cost tracking; peer-to-peer building comparisons of energy use                     | Whole-building or<br>portfolio energy<br>tracking at an hourly<br>data level; data<br>visualization                     | Automated identification of system-level faults, often with associated causes, usually HVAC focused                                                        | Automated modification of control parameters to optimize efficiency, energy use, and/or energy costs |
| Benefits              | Provides insight into whole-building energy performance; assists in streamlining bill payment processing and/or tenant billing | Provides granular energy consumption history and summary of use patterns; notifies user when energy exceeds expectation | Early identification of<br>faults can prevent<br>mechanical failure,<br>extending equipment<br>life; Faults flag energy<br>waste for specific<br>equipment | Dynamically change<br>HVAC settings to<br>optimize energy use<br>and comfort                         |
| Frequency of Use      | Monthly, annually                                                                                                              | Daily, weekly, monthly                                                                                                  | Daily, weekly, monthly                                                                                                                                     | Instantaneously with review weekly or monthly                                                        |
| Typical Data Scope    | Whole building or campus                                                                                                       | Whole building, may include submetering and system-level monitoring                                                     | BAS data including central plant, AHUs, and zone-level data                                                                                                | Systems, components,<br>BAS trends; may<br>include whole-building<br>or system-level<br>submetering  |
| Typical Data Interval | Monthly                                                                                                                        | Hourly to 15-minute                                                                                                     | 15-minute and less                                                                                                                                         | 15-minute and less                                                                                   |
| Energy Savings        | 2.4% average annual energy savings <sup>a</sup>                                                                                | 3% median annual<br>energy savings<br>(\$0.03/sq ft) <sup>b</sup>                                                       | 9% median annual<br>energy savings<br>(\$0.24/sq ft) <sup>b</sup>                                                                                          | Depends on system<br>type<br>Case study: 0%–9%<br>energy savings <sup>c</sup>                        |
| Costs                 | Free or low cost <sup>d</sup>                                                                                                  | Base: \$0.01/sq ft<br>Annual: \$0.01/sq ft <sup>b</sup>                                                                 | Base: \$0.06/sq ft<br>Annual: \$0.02/sq ft <sup>b</sup>                                                                                                    | Depends on base<br>HVAC system<br>configuration                                                      |

Primer on Organizational Use of EMIS, LBNL



# Metering and Expertise Required for Analysis

Minimum Data Requirements

| Analysis Mothodo               | U   | Itility  |           | erval<br>eter  | S               | ubmete          | er               | Other* |
|--------------------------------|-----|----------|-----------|----------------|-----------------|-----------------|------------------|--------|
| Analysis Methods               | Gas | Electric | WB<br>Gas | WB<br>Electric | Heating<br>Load | Cooling<br>Load | Lighting<br>Load |        |
| Simple Tracking                | •   | •        |           |                |                 |                 |                  |        |
| Utility Cost Accounting        | •   | •        |           |                |                 |                 |                  |        |
| Internal Rate of Return        | •   | •        |           |                |                 |                 |                  | •      |
| Carbon Accounting              | •   | •        |           |                |                 |                 |                  | •      |
| Longitudinal Benchmarking      | •   | •        |           |                |                 |                 |                  | •      |
| Cross-Sectional Benchmarking   | •   | •        |           |                |                 |                 |                  | •      |
| Loading Profiling              |     |          | •         | •              |                 |                 |                  |        |
| Peak Load Analysis             |     |          |           | •              |                 |                 |                  |        |
| PV Monitoring                  |     |          |           |                |                 |                 |                  | •      |
| Loading Histograms             |     |          |           |                | •               | •               |                  |        |
| Simple Baselines               | •   | •        |           |                |                 |                 |                  | •      |
| Model Baselines                |     |          | •         | •              |                 |                 |                  | •      |
| Lighting Efficiency            |     |          |           |                |                 |                 | •                | •      |
| Heating and Cooling Efficiency |     |          |           |                | •               | •               |                  | •      |
| Energy Signature               | •   | •        |           |                |                 |                 |                  | •      |
| Energy Savings                 | •   | •        |           |                |                 |                 |                  | •      |
| Cumulative Sum                 | •   | •        |           |                |                 |                 |                  | •      |
| Anomaly Detection              |     |          | •         | •              |                 |                 |                  | •      |

WB = whole-building.

Interpretation of Method Output

| Analysis Methods               | Requires<br>Minimal<br>Expertise | Requires<br>Advanced<br>Expertise |
|--------------------------------|----------------------------------|-----------------------------------|
| Simple Tracking                |                                  |                                   |
| Utility Cost Accounting        |                                  |                                   |
| Internal Rate of Return        |                                  |                                   |
| Carbon Accounting              |                                  |                                   |
| Longitudinal Benchmarking      |                                  |                                   |
| Cross-Sectional Benchmarking   |                                  |                                   |
| Loading Profiling              |                                  |                                   |
| Peak Load Analysis             |                                  |                                   |
| PV Monitoring                  |                                  |                                   |
| Loading Histograms             |                                  |                                   |
| Simple Baselines               |                                  |                                   |
| Model Baselines                |                                  |                                   |
| Lighting Efficiency            |                                  |                                   |
| Heating and Cooling Efficiency |                                  |                                   |
| Energy Signature               |                                  |                                   |
| Energy Savings                 |                                  |                                   |
| Cumulative Sum                 |                                  |                                   |
| Anomaly Detection              |                                  |                                   |

<sup>\*</sup>Other includes for example, weather data, square footage, or equipmment costs.

# **Data Requirements for Analysis**



#### TABLE 3: EXAMPLE DATA REQUIREMENTS FOR EMIS-RELATED ACTIVITIES

| Activity                                               | Data Type                                                                                                                                 | Minimum Resolution                                                                                                                       |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| ENERGY STAR Portfolio Manager                          | Whole-building energy use                                                                                                                 | Monthly                                                                                                                                  |
| Benchmarking                                           | Gross floor area, ZIP code, building type, year of construction, # of occupants, # of computers                                           | Static information, updated as needed                                                                                                    |
| Utility Bill Validation                                | Utility bills; EMIS-metered whole-building or account-level energy use and demand                                                         | Monthly (from utility bills) or hourly (if interval data are available)                                                                  |
|                                                        | Utility tariff                                                                                                                            | Static information, updated as needed                                                                                                    |
| Portfolio-specific Benchmarking                        | Whole-building energy use                                                                                                                 | Annual                                                                                                                                   |
|                                                        | Gross floor area, ZIP code, building type, and year of construction                                                                       | Static information, updated as needed                                                                                                    |
| Measurement and Verification                           | Energy and demand; Weather condition (outside air temperature or degree days)                                                             | Based on depth of savings and M&V accuracy requirements. Monthly, hourly, and sub-hourly data may be used depending on data availability |
| Demand Management                                      | Whole-building electric                                                                                                                   | 15-minute                                                                                                                                |
| Greenhouse Gas (GHG) Tracking                          | GHG emission conversion factors                                                                                                           | Static information, updated as needed                                                                                                    |
|                                                        | Energy use                                                                                                                                | Monthly                                                                                                                                  |
| Whole-Building Load Profiling                          | Whole-building energy use                                                                                                                 | Hourly or sub-hourly                                                                                                                     |
| Energy Tracking of Major Energy<br>Consuming Equipment | Submetered energy use at the end-use or equipment level                                                                                   | Hourly or sub-hourly                                                                                                                     |
| Energy Anomaly Alarming                                | Energy use; Weather conditions (outside air temperature)                                                                                  | Hourly or sub-hourly                                                                                                                     |
| System/Equipment Fault<br>Identification               | Depends on the targeted system; usually includes temperature, flow rate, on/off status, and pressure sensor data                          | 15-minute or a shorter interval                                                                                                          |
| Regular Reporting                                      | Depends on the reporting requirement, energy and demand for consumption-related reports, prioritized issues for operation-related reports | Depends on the reporting requirement                                                                                                     |

Primer on Organizational Use of EMIS, LBNL

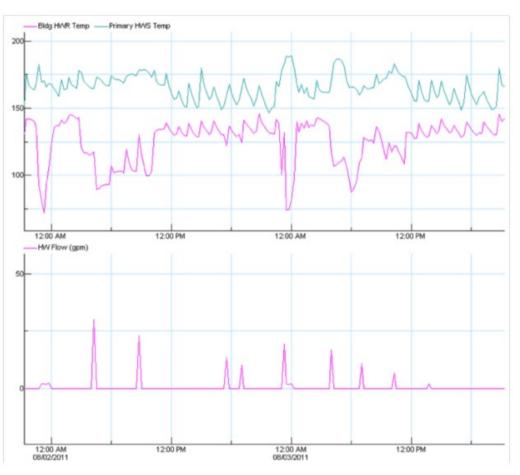
# **Polling Break**



- What temporal energy data are available to you?
  - Monthly
  - Weekly
  - Daily
  - Hourly
  - Sub-hourly
- What granularity of energy data are available to you?
  - Building level
  - System level (e.g., HVAC, lighting, etc.)
  - Room level
  - Plug level
  - I don't know

# Energy Management Tools & Platforms

# **Polling Break**




- Does your District already have a building automation systems (BAS) in place?
  - Yes, in all schools
  - Yes, in some schools
  - No, not yet
  - I don't know



# **Building Automation Systems (BAS)**

- System designed to control building operations and indoor climate
- Store, trend and plot system-level operational or control data including setpoints, temperatures and equipment status
- Can export data for further analysis
- Higher upfront cost, large savings



Source: Lawrence Berkeley National Laboratory



# **Energy Information Systems (EIS)**

- Software, sensors and communications systems used to store, analyze and display building data
- Commonly include interval data on electricity and gas at wholebuilding or submeter level
- Can also be exported for further analysis



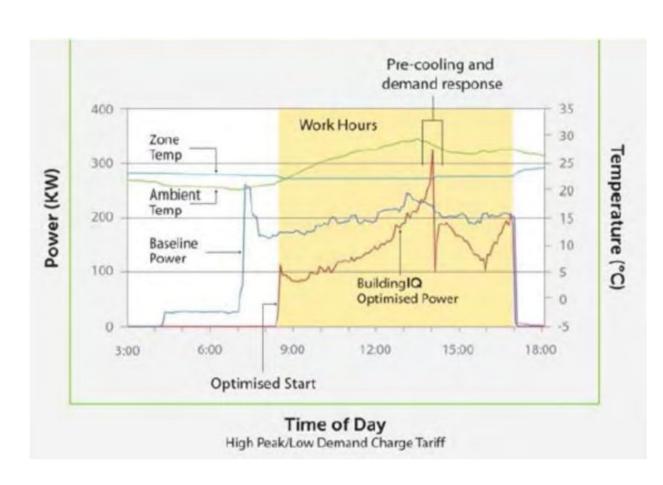
Source: Lawrence Berkeley National Laboratory



# Fault Detection and Diagnostics (FDD)

- Consists of 3 processes:
  - Fault detection: Determining a fault has occurred in system
  - Fault isolation: Determining specific fault occurred including type, location, and time of detection
  - Fault identification: Determining size and timevariant behavior of a fault
- Can detect problems that otherwise may have lingered for months
- While many building performance problems are compensated automatically by controls, there is an energy/cost penalty

#### FIGURE 7: FAULT PRIORITIZATION EXAMPLE FROM AN FDD TOOL


| Energy                                                                    |                         |                                                                                                                                                                    |                                |
|---------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Building                                                                  | Equipment               | Notes                                                                                                                                                              | Cost/Qtr                       |
| Anon Hospital                                                             | AHU_6_CAVs              | Low Damper Position – opportunity for static pressure reset.                                                                                                       | \$11,120                       |
| Anon Hospital                                                             | AHU_11                  | No supply temp reset. Cooling valve issues.                                                                                                                        | \$7,778                        |
| Anon Hospital                                                             | AHU_6                   | No supply temp reset. Cooling valve issues.                                                                                                                        | \$6,163                        |
| Anon Hospital                                                             | AHU_5                   | Supply temp lower than setpoint. No supply temp reset. Cooling valve issues.                                                                                       | \$5,029                        |
|                                                                           |                         |                                                                                                                                                                    |                                |
| Anon Hospital                                                             | AHU_4                   | Supply temp lower than setpoint. No supply temp reset. Cooling valve issues.                                                                                       | \$4,318                        |
| <b>X</b> Maintena                                                         |                         | Supply temp lower than setpoint. No supply temp reset. Cooling valve issues.  Notes                                                                                | \$4,318<br>Severity<br>Priorty |
| Maintena<br>Building                                                      | nnce                    |                                                                                                                                                                    | Severity                       |
| Maintena Building Anon Hospital                                           | ence<br>Equipment       | Notes                                                                                                                                                              | Severity<br>Priorty            |
| Maintena Building Anon Hospital Anon Hospital                             | Equipment AHU_11        | Notes  Static pressure lower than setpoint. Supply fan speed constant. Return fan speed constant.                                                                  | Severity<br>Priorty            |
| Maintena Building Anon Hospital Anon Hospital Anon Hospital Anon Hospital | Equipment AHU_11 AHU_10 | Notes  Static pressure lower than setpoint. Supply fan speed constant. Return fan speed constant.  Static pressure lower than setpoint. Supply fan speed constant. | Severity<br>Priorty<br>6       |

Source: EMIS Primer, Lawrence Berkeley National Laboratory



# **Automated System Optimization (ASO)**

- Continuously analyzes and modifies BAS control settings to optimize heating, ventilation, and air conditioning (HVAC) system energy usage while maintaining occupant comfort
- Two-way communication with the BAS distinguishes ASO solutions from FDD.
- Generally, focus on optimizing chilled water plant and air handling unit (AHU) reset strategies based on outdoor conditions.
- May determine a day-ahead optimal start time for a chilled water plant based on weather and load forecasts, with an objective to minimize total plant energy use.



Source: Hudson Pacific Properties, 2019

# **Energy Management Information System Procurement**



# **Elements of EMIS System Costs**

Table 6. Key elements of EMIS costs

|                                        | Cost Items                                                      |                                                 | Description                                                                                                                                                                                                                           |
|----------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMIS Implementation Costs              | A: Base costs for<br>EMIS technology                            | A.1: Hardware costs                             | Costs for hardware installation and upgrade (e.g., adding meters and sensors during the project for EMIS monitoring purposes, installing gateways for communication, getting data servers for data storage)                           |
|                                        |                                                                 | A.2: Software costs                             | Costs for the EMIS software installation and configuration to bring in all the data points, alteration of the existing BAS to expose legacy data points, and training to site staff, including EMIS vendor and service provider costs |
|                                        | B: In-house labor costs for EMIS installation and commissioning |                                                 | Approximate total labor costs spent by in-house staff to support installation and configuration of the EMIS                                                                                                                           |
| Ongoing Annual EMIS<br>Operating Costs | C: Ongoing<br>annual costs for<br>EMIS technology               | C.1: Annual EMIS costs                          | The recurring annual cost for a software license, software-as-a-service fees, or hardware (e.g. occupancy counters)                                                                                                                   |
|                                        |                                                                 | C.2: Annual third-<br>party consultant<br>costs | The average annual cost paid to a third-party consultant for support in analyzing and implementing EMIS findings                                                                                                                      |
|                                        | D: Ongoing annual in-house labor costs for EMIS use             |                                                 | Approximate labor costs spent by in-house staff reviewing EMIS reports, identifying opportunities for improvement, and implementing measures (may be based on average hours spent per month)                                          |

EMIS Field Evaluation Protocol, LBNL: 1

https://betterbuildingssolutioncenter.energy.gov/sites/default/files/attachments/EMIS\_evaluation\_protocol.pdf





#### Energy Management and Information Systems (EMIS) Specification and Procurement Support Materials

December 2020





# **EMIS Spec & Procurement Template**

- A Request for Proposals (RFP) Template that can be filled out to create an organization- and project-specific RFP for vendors.
- An EMIS Technology Specification (Section 2) that can be tailored to generate owner-driven requirements for technology features and capabilities, data integration, and maintenance support.
- An Ongoing Services Specification (Section 3) that can be tailored to generate owner-driven requirements to support in-house staff beyond the EMIS installation period. If the EMIS will be utilized exclusively by in-house staff and ongoing service provider support, the services specification can be omitted.
- Additional sections to define the proposal format, eligibility, and evaluation approach. Appendices provide additional support for developing your RFP, including a table that can be used to summarize the owner's requirements and options with respect to the Technical Specification.



## **Team Members**

The table below illustrates what a team could look like for EMIS procurement and deployment

**Table 1. Team Members** 

| Title                                              | Role                                                                                                                                                                                                                                                                                                  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Energy Manager                                     | Manages the EMIS project, oversees planning and implementation of the EMIS, and communicates progress and outcomes to management.                                                                                                                                                                     |  |
| Building Engineer                                  | Familiar with the building's control system and architecture. Assists with EMIS installation by answering questions from the EMIS provider around existing system configuration. Involved in the selection of analytics and FDD rules to apply to the systems.                                        |  |
| IT Representative                                  | Supports EMIS setup regarding IT networks, data transfer processes, and network cybersecurity.                                                                                                                                                                                                        |  |
| Environmental<br>Health & Safety<br>Representative | If the equipment to be monitored includes specialty equipment that requires additional support, the EH&S representative will provide input.                                                                                                                                                           |  |
| EMIS Provider                                      | The EMIS provider serves as the system integrator and is responsible for setting up data transfer and configuring and commissioning the EMIS according to this specification. The EMIS provider leads the training and hand-off to the energy manager, building engineer, and MBCx services provider. |  |
| (MBCx) Services<br>Provider                        | The service provider may support the EMIS provider during EMIS installation, or they may be the same company as the EMIS provider. The service provider is responsible for the services in Section 3, and typically works with the building engineer to implement findings.                           |  |



# **Specifying BAS Data Integration**

The sample language below is important to ensure communication between existing/new software and

hardware

#### 2.1.3 Building automation system (BAS) data integration

The technology will extract data from the building control systems for FDD functions. [Note specific building control systems existing at facilities. Indicate whether the EMIS will also provide supervisory control of building automation systems for automated system optimization purposes (See Section 2.5).]

- ▶ The data collection interval will be selected to meet the needs of the FDD software and is compatible with BAS trending, with 15-minute interval data being the most implemented. Change of value and/or slower polling rates may be needed to reduce network burden on the control system, and the effect of data collection interval on network speed will be determined during FDD setup. Slower or faster polling rates may also be implemented based on the type of fault (e.g., hunting and cycling faults may need one- to five-minute interval data).
- Integration with non-legacy vintages of BAS providers will occur via common protocols such as BACnet and Modbus, or through the BAS vendor's gateway. If the BAS does not support BACnet, a data gateway or protocol converter will need to be installed by the EMIS vendor.
- [Either all BAS data or a subset of available BAS data may be integrated into the EMIS. Owners that wish to limit the scope to specific systems should edit this section to indicate their preferences here.] BAS data will be integrated as follows:
  - These data include: [chiller/boiler plant data, air handler data, and zone device data].
  - Integration will include but not be limited to [energy meter data already connected into the BAS, equipment status, setpoints, valve/damper control signals, fan speed, air flow rate, pump water flow rate, and air and water temperatures].
- Near-real time data polling or end of day batch uploads to the EMIS are acceptable.
- The data integration will not adversely affect the speed of the existing BAS control or visualization functions.

# Guest Speaker

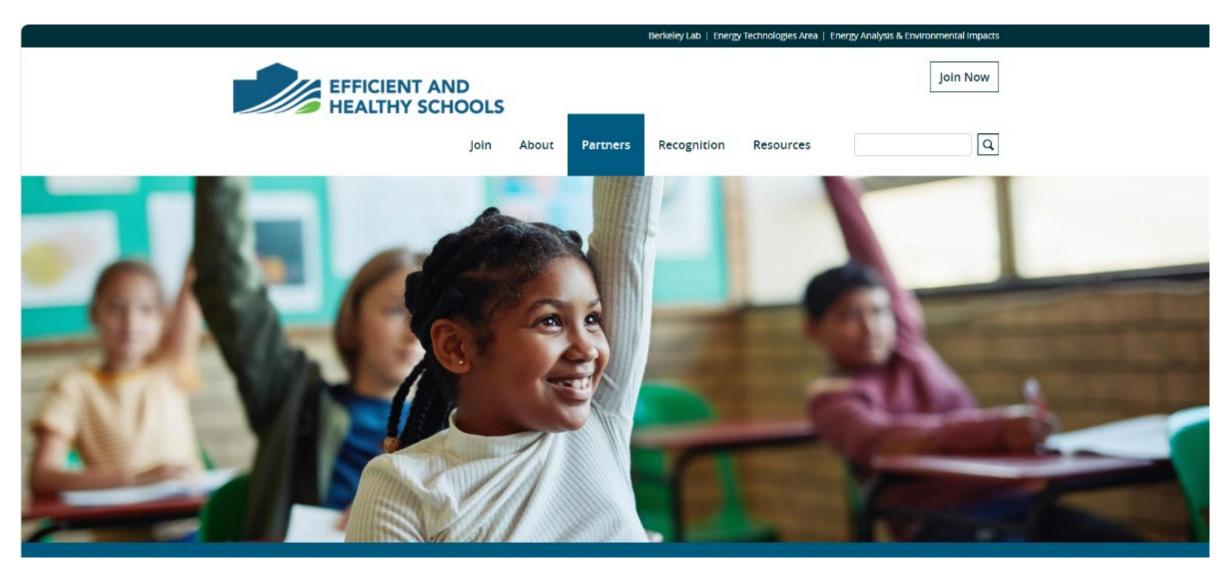
#### **Today's Guest Speaker**



#### Lyndl Schuster

Assistant Superintendent for Business Services

River Trails District 26


Dr. Lyndl Schuster has served as the assistant superintendent for business services at River Trails District 26 since August 2006. She holds a B.S. and an M.S. in management with a concentration in finance from the Massachusetts Institute of Technology, Sloan School of Management, in Cambridge, Massachusetts. She attended the School Business Management program jointly sponsored by Northern Illinois University and Illinois Association of School Business Officials and received her Chief School Business Officials endorsement in 2003. In 2016 she received her doctorate, educational leadership and superintendent endorsement from Western Illinois University. Dr. Schuster is passionate about the environment and leads the district's sustainability efforts as well as the District Wellness Committee, which focuses on employee and student health and wellness as well as environmental wellness. She believes that education holds the key to lifelong success and her goal is to ensure that every student is inspired to learn and to reach their maximum potential while District 26 maintains financial stability.



# Key Resources

### **DOE/LBNL** Efficient and Healthy Schools





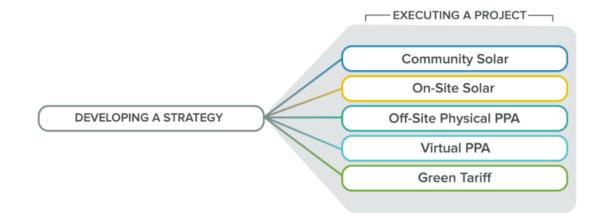
https://efficienthealthyschools.lbl.gov/

#### American Cities Climate Challenge: Procurement Guidance



#### **American Cities** Climate Challenge

RENEWABLES ACCELERATOR


- Tools
- Resources
- Guidance
- Glossary of Terms

#### PROCUREMENT GUIDANCE

## Overview Developing a Strategy Community Solar On-Site Solar Off-Site Physical PPA Virtual PPA Green Tariff Funding Guidance Large-Scale Renewables Aggregation Solarize

#### **Overview**

This is a detailed guide for cities on the considerations and steps involved for a city to procure different types of renewable energy. The procurement guidance provided here is designed to help city governments effectively and efficiently understand associated processes, tools, and best practices in order to facilitate successful implementation of municipal renewable energy projects. The quidance is broken down into two distinct stages: Developing a Strategy and Executing a Project.



Overview - American Cities Climate Challenge (cityrenewables.org)

## **EECBG Blueprints and Cohorts**



#### Energy Efficiency and Conservation Block Grant Program Blueprints

Office of State and Community Energy Programs

#### **Blueprint Topics**

- 1. Comprehensive Energy Planning
- 2. Energy Efficiency
  - Energy Assessments and Building Upgrades,
  - Energy Savings Performance Contracts,
  - Building Electrification Campaign,
  - Building Performance Standards & Stretch Codes

#### 3. Renewables

- Solar PPAs and Direct Ownership,
- Solarize Campaign,
- Community Solar,
- Renewable Resource Planning for (rural and tribal) communities

#### 4. Transportation

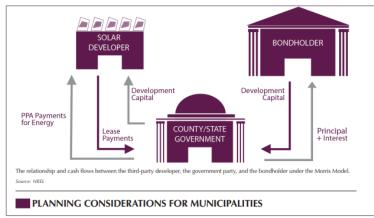
- Electric Vehicles for Fleets & Fleet Electrification,
- EV Charging Infrastructure for the Community
- 5. Financing Solutions Revolving Loan Funds
- 6. Workforce Development

# Blueprint Cohorts will meet virtually on an ongoing basis to:

- Ask and answer questions
- Provide updates
- Share experiences
- Hear from experts
- Troubleshoot common areas of concern
- Participate in tool demonstrations
- Share success stories

Sign up here to join a Blueprint Cohort: <a href="https://forms.office.com/g/Phr3DWKiwJ">https://forms.office.com/g/Phr3DWKiwJ</a>

#### See the Blueprint Resources here:


https://www.energy.gov/scep/energy-efficiency-andconservation-block-grant-program-blueprints

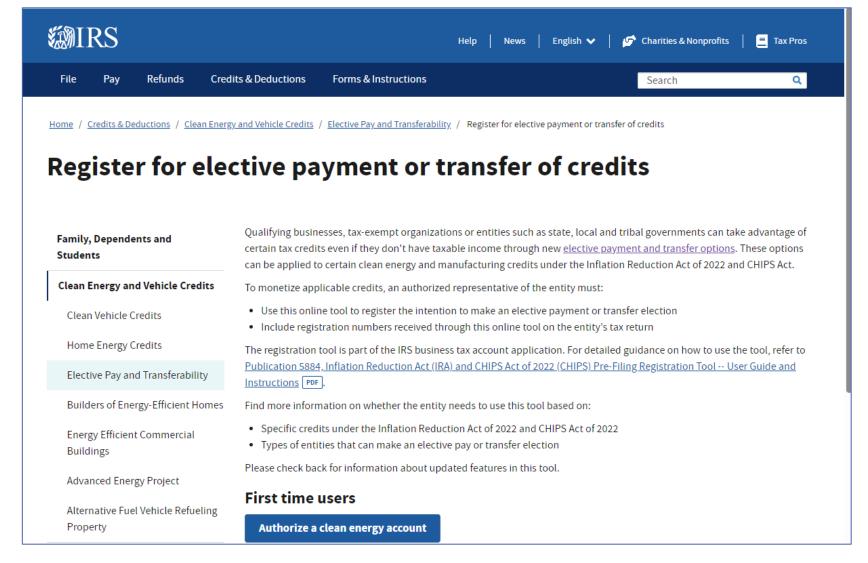
#### **Key Resources**



- HUD Exchange
  - Renewable Energy Resources Case Studies
- Center for Climate and Energy Solutions
  - Buying Clean Electricity: How Cities Benefit from Power Purchase Agreements





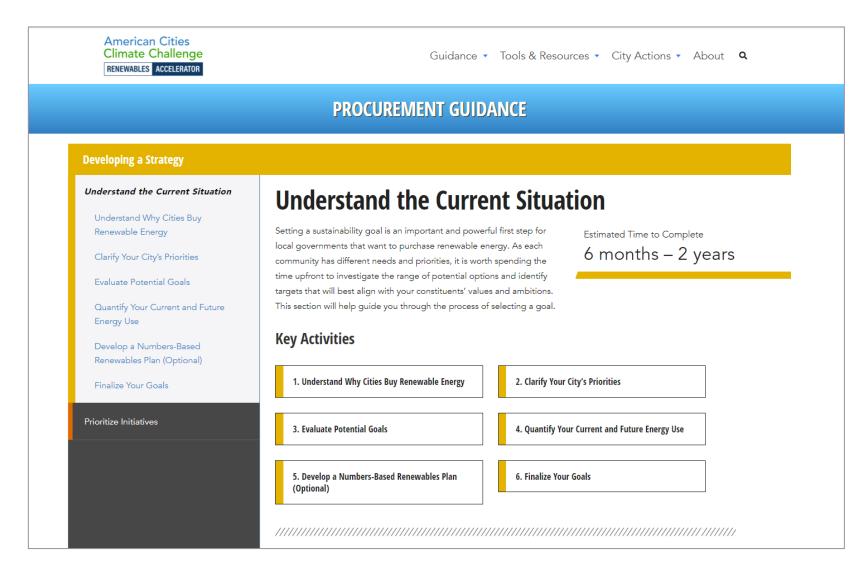

#### Webinar: Elective Pay and IRS Energy Credits Online



- For direct payment or transferring a clean energy credit for 2023, entities must complete a pre-filing registration process.
- Dept. of Treasury will host an Elective Pay webinar and provide an overview of the pre-filling registration process:

Tues, Jan. 9, 2024 2PM (eastern)

Webinar Registration




https://www.irs.gov/credits-deductions/register-for-elective-payment-or-transfer-of-credits

# Conclusion

#### **Assignment**





Review the American
Cities Climate Challenge:
Understand the Current
Situation Key Activities
and begin discussing with
colleagues what
energy/GHG emissions
goals (and other priorities)
best align with your
organization.

Your Current Situation - American Cities Climate Challenge (cityrenewables.org)



## Questions?

We look forward to working with you!

