

Setting the Stage for Long Term Building Efficiency and Sustainability

Fundamental Bldg Science Cohort Groups

Cohort 1	Cohort 2	Cohort 3	Cohort 4
Brevard Public Schools	Jackson County School District	Lansing School District	Paducah Public Schools
Detroit Public Schools Community District	Mascoma Valley Regional School District	Kansas City Kansas Public Schools	Environmental Charter Schools
Canajoharie Central School District	Elkhorn Area School District	Irvington Public School District	Natchez Adams School District
Albemarle County Public Schools	Martin County Schools	Granite School District	East Cleveland City Schools
IDEA Public Schools	San Antonio Independent School District	Nenana City School District	Baltimore City Public Schools
Southwest Vermont Supervisory Union	NEWESD 101	Baltimore City Public Schools	Milwaukee Public Schools
		City Schools of Decatur	Orange County Public Schools

Welcome

Let's get to know each other!	10 mins
Lesson PlanIntroduction	1 hour 20 mins
 Energy Issues and Building Solutions 	
 The Building is a System: Sustainable Building 	
Performance	
 Project Preparation 	
Discussion	30 mins

Today's Presenters

Shannon Oliver Energy & Sustainability Manager Adams 12 5 Star Schools

Reilly Loveland Associate Director New Buildings Institute

lcebreaker

Introducing the Mentimeter Marmot!

Instructions:

- Scan the mentimeter code on your phone or enter on your computer browser.
- Respond to the prompts and answers will populate real time.

Introduction

Course Objective

Understand what building science is and how can it be used to optimize building performance to decrease energy use/cost, and alleviate dependency on fossil fuels.

- 1. Participants will be able to identify major energy using systems common in K-12 school buildings.
- 2. Participants will understand the impacts of building upgrades, maintenance, and operation on efficiency and occupant health.
- 3. Participants will understand how to begin the process of project planning and preparation to achieve efficient and healthy school buildings.

What is building science?

- A field of knowledge that explains how a building works as a system of components that interact with each other and the outdoor environment.
- It describes how the physical behavior of the building impacts energy efficiency, durability, comfort, and indoor air quality.
- Important in all building phases!

Why building science matters to schools

- Upgrades to school facilities can:
 - ✓ Improve air quality
 - ✓ Improve comfort and health conditions
 - ✓ Support better student learning
 - ✓ Provide significant reductions in school energy bills
 - ✓ Help to stabilize utility costs for annual budgeting
 - ✓Opportunities for safety and security

Source: https://www.energy.gov/eere/buildings/efficient-and-healthy-schools

Why building science matters to schools

WHY ARE GREEN SCHOOLS BETTER SCHOOLS?

Did you know that the classroom environment can affect a child's academic progress over a year by as much as

Reduction in asthma cases among elementary students when school indoor environment quality improves.²

Reduction in teacher turnover in green schools - saving US\$4 per square foot over a 20 year period.3

Faster progression in math in schools with good daylighting.4

Credit: World GBC

Faster progression in reading in schools with good daylighting.4

Increase in overall performance in schools with good daylighting.4

- Barett, P., Zhang, Y., Moffat, J., & Kobbacy, K. (2012, October 03). A holistic, multi-level analysis identifying the impact of classroom design on pupils' learning. 1.
- 2. Meng, Y., Babey, S. H., & Wolstein, J. (2012). Asthma-Related School Absenteeism and School Concentration of Low-Income Students in California.
- З. Katz, G. (2006). Greening America's Schools: Costs and Benefits.
- 4. Heschong Mahone Group. (1999). Daylighting in Schools: An Investigation into the Relationship Between Daylighting and Human Performance.

Why building science matters to schools

School <u>buildings</u> can be a tool to enhance student learning

Student Performing Energy Audit, Los Angeles USD, CA Credit: Los Angeles USD

Foundational Concepts

Key Energy Concept: Site vs. Source Energy

- Source energy: The total amount of raw fuel required to operate a building
- Site energy: The amount of heat and electricity consumed by the building

Source: https://www.energystar.gov/buildings/benchmark/understand_metrics/source_site_difference

Key Energy Concept: Site vs. Source Energy

Source EUI Trend (kBtu/ft²) Change Metric (Chart current as of 05/09/2023 **Refresh Chart** 09:43 AM PDT)

ENERGY STAR® PortfolioManag	Chang Chang	g <u>e Metrics</u> g <u>e Time Periods</u>	
Metrics Summary			
Metric 🥒	Jan 2010 🥖 (Other)	Jun 2023 (Energy 🥖 Current)	Change 🕖
ENERGY STAR Score (1-100)	71	80	9.00 (12.70%)
Source EUI (kBtu/ft²)	107.0	89.6	-17.40 (-16.30%)
Site EUI (kBtu/ft²)	47.2	41.0	-6.20 (-13.10%)
Energy Cost (\$)	96,589.16	109,153.86	12564.70 (13.00%)
Total (Location-Based) GHG Emissions Intensity (kgCO2e/ft²)	5.5	3.0	-2.50 (-45.50%)
Water Use (All Water Sources) (kgal)	2,191.8	Not Available	N/A
Total Waste (Disposed and Diverted) (Tons)	Not Available	Not Available	N/A

Key Energy Concept: Energy Use Intensity (EUI)

- Total energy consumed in one year, divided by the gross floor area (square footage)
 - Energy is expressed in units of kBtu for easy comparison
 - Usually based on site energy (not source energy)

Annual Energy Use (kBtu/yr)

Square Footage (ft²)

Key Energy Concept: Energy Use Intensity (EUI)

PortfolioManager[®] U.S. Energy Use Intensity by Property Type

Broad Category	Primary Function	Further Breakdown (where needed)	Source EUI (kBtu/ft²)	Site EUI (kBtu/ft²)	Reference Data Source - Peer Group Comparison
	Adult Education		110.4	52.4	CBECS - Education
	College/University		180.6	84.3	CBECS - College/University
Education	K-12 School*		104.4	48.5	CBECS - Elementary/Middle & High School
	Pre-school/Daycare		131.5	64.8	CBECS - Preschool
	Vocational School		110.4	52.4	CBECS - Education
	Other - Education	ther - Education			

https://portfoliomanager.energystar.gov/pdf/reference/US%20National%20Median%20Table.pdf

Net zero target: 16-26 kBtu/SF-year

Key Energy Concept: Greenhouse Gas (GHG) Emissions

- Measured in units of CO₂e
- May also be referred to as "carbon"
- Total emissions = direct (used at building + transportation) + indirect (energy purchased from a utility)
- Different fuel sources = different emissions per unit of energy
- Different grids have different fuel mixes (and carbon intensity)
- Not all hours of the grid are equal

Schools in the United States produce emissions equivalent to **18 coal-fired power plants** each year.

Source: <u>Why K-12 Should Feature in</u> <u>America's National Climate Strategy</u>

Scopes of Emissions in Schools

Key Energy Concept: Carbon Neutral Buildings

- Net zero energy \neq carbon neutral
- A carbon neutral building is a well-ventilated, highly energy efficient building that does not contribute emissions of carbon and other greenhouse gases that contribute to climate change. A building is considered carbon neutral operations if it:
 - Maximizes energy efficiency while providing healthy indoor environments
 - Is all-electric and has no onsite fuel combustion
 - Offsets all the electricity used with 100% renewable energy sources

Source: https://newbuildings.org/wp-content/uploads/2022/06/NBI_Key-Messages-About-Carbon-Neutral-Schools_June2022.pdf

Interactive map of climate school district & building commitments

• <u>https://newbuildings.org</u> /<u>resource/interactive-</u> <u>map-of-carbon-neutral-</u> <u>school-districts/</u>

Key Energy Concept: Major building elements

Building systems

- HVAC
- Water heating
- Lighting
- Kitchen equipment
- Electrical systems
- Plug and process loads
- Controls

Building Envelope

- Roofs and walls
- Foundation
- Windows and doors

Key Energy Concept: Major building elements

Onsite energy generation and storage

- Meets energy consumption needs
 while reducing GHG emissions
- Store energy to use at different times
- Provide backup power in case of an outage

Building systems

 Defines the magnitude of total energy consumption and GHG emissions

Building Envelope

 Passively impacts building system energy consumption

Major building elements: common retrofits

Building systems

- HVAC
- Water heating
- Lighting
- Kitchen equipment
- Electrical systems
- Plug and process loads (appliance replacement)
- Controls

Building Envelope

- Roofs and walls
- Foundation
- Windows and doors

Major building elements: common retrofits

- The best retrofit options will depend on your site
- HVAC and lighting upgrades often are "biggest bang for your buck"
- Appliance upgrades (kitchen, plug loads) can be lower cost and still add up

Source: Integral Group, Inc for CA Prop 39

Health, Safety, and Comfort in School Buildings

Common building issues

Health	 Mold Moisture intrusion Indoor environmental/air quality (IEQ/IAQ)
Safety	 Aging infrastructure (windows you can't lock!) Toxic building materials Lighting (security camera visibility)
Comfort	 Poor temperature balancing Poor ventilation Accessibility Lighting

Healthy buildings

The 9 aspects of healthy buildings:

- Ventilation
- Air Quality
- Water Quality
- Thermal Health
- Dust and Pests

Lighting and Views

- Noise
- Moisture
- □ Safety & Security

Source: https://www.energy.gov/femp/articles/existing-healthy-building-resources-overview

Healthy buildings

• Indoor Air Quality (IAQ) - focused on air quality

VS.

- Indoor Environmental Quality (IEQ) holistic assessment
- IAQ/IEQ impacts:
 - Short- and long-term health effects
 - Absenteeism
 - Test scores
 - Productivity
 - Staff wellness and retention

Nearly 1 in 13 children has asthma, the leading cause of school absenteeism due to chronic illness.

Healthy buildings

JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022, VOL. 19, NO. 8, 478–488 https://doi.org/10.1080/15459624.2022.2089675

Check for updates

Relationships between social climate and indoor environmental quality and frequently reported health symptoms among teachers and staff in a suburban school district

er Schill^c, Matthew Klimm^c, Jennifer E. Cross^{d,e} (b), Shannon Oliver^f, and Environmental Science and Pollution Research (2020) 27:16624–16639 https://doi.org/10.1007/s11356-020-08092-w hity Health, University of Illinois at Urbana-Champaign, Champaign, Illinois; ^bDepartment of **RESEARCH ARTICLE** ciences, Colorado State University, Fort Collins, Colorado; ^cInstitute for the Built Environment, blorado; ^dInstitute for Research in the Social Sciences, Colorado State University, Fort Collins, prado State University, Fort Collins, Colorado; ^fManager, Energy and Sustainability, hent of Epidemiology, Colorado School of Public Health, Aurora, Colorado Check for updates Identifying and evaluating school environmental health indicators Shao Lin^{1,2} · Yi Lu¹ · Zigiang Lin¹ · Xiaobo Xue Romeiko¹ · Tia Marks¹ · Wangjian Zhang¹ · Haider A. Khwaja^{1,3} · Guanghui Dong⁴ · George Thurston⁵ Contents lists available at ScienceDirect Hygiene and commental Heal International Journal of Hygiene and **Environmental Health** International Journal of journal homepage: www.elsevier.com/locate/ijheh Environmental Research **MDPI** and Public Health Article School environmental conditions and links to academic performance and Indoor Air Quality Prior to and Following School Building absenteeism in urban, mid-Atlantic public schools **Renovation in a Mid-Atlantic School District** J.D. Berman^{a,s,1}, M.C. McCormack^b, K.A. Koehler^c, F. Connolly^d, D. Clemons-Erby^c, M.F. Davis^c, C. Gummerson^b, P.J. Leaf^e, T.D. Jones^f, F.C. Curriero^a Sandra E. Zaeh ^{1,2}, Kirsten Koehler ³, Michelle N. Eakin ², Christopher Wohn ⁴, Ike Diibor ⁴, Thomas Eckmann ²,

Tianshi David Wu ^{5,6}, Dorothy Clemons-Erby ³, Christine E. Gummerson ⁷, Timothy Green ³, Megan Wood ³,

Ehsan Majd⁸, Marc L. Stein ^{9,10}, Ana Rule³, Meghan F. Davis^{3,11} and Meredith C. McCormack^{2,*}

Healthy buildings: energy efficiency can help

The 9 aspects of healthy buildings:

- Ventilation
- □ Air Quality
- Water Quality
- Thermal Health
- Dust and Pests

Lighting and Views
Noise
Moisture
Safety & Security

Source: https://www.energy.gov/femp/articles/existing-healthy-building-resources-overview

Energy efficiency

- Goal: Use less resources (energy) to operate, without compromising comfort or reliability
- Can be achieved through a variety of measures impacting the building envelope, systems, and equipment.

Benefits	Challenges	
Cost savings	😕 Inadequate funding	
Community benefits	Competing priorities	
Servironmental benefits	Overburdened staff	
© Resilience		
Health benefits		

Energy efficiency: opportunity

Schools and educational facilities are the **third largest sector of commercial building energy usage** in the United States. nbi new buildings

Key Messages for Communicating About Carbon Neutral Schools

Energy efficiency: opportunity

School building energy consumption costs K-12 school districts in the United States more than \$12.5 billion per year. nbi new buildings

Key Messages for Communicating About Carbon Neutral Schools

Energy efficiency: opportunity

If only 16% of high school students in high- and middleincome countries received climate change education, we could see a nearly 19 gigaton reduction of carbon dioxide by 2050

nbi new buildings

Key Messages for Communicating About Carbon Neutral Schools

Sustainable Building Performance

The building is a system

HEATING & COOLING ENVELOPE MECHANICAL SYSTEMS PLUMBING CONVECTION RADIATION STRUCTURE CONDUCTION ELECTRICAL THERMAL BOUNDARY AIR BARRIER LIGHTING VENTILATION AIR LEAKAGE HEAT FLOW CAPILLARITY **AIR FLOW** MOISTURE FLOW DIFFUSION CONTROL STACK EFFECT BULK MOISTURE

The building is a system

- Everything is connected! When planning one system upgrade, consider the impact on the building overall to ensure improved performance
 - Consider both first cost and ongoing equipment costs
- Occupancy in schools matters, and it goes beyond normal school hours

Site & Services Infrastructure

The building is a system

 Rule of thumb: elements will follow the path of least resistance to create equilibrium

Winter example (Cold outside, warm inside):

- Heat and warm moist air escape
- Heating system must make up
 for lost heat
- Humidification required for lost moisture

Source: https://www.wbdg.org/resources/building-science-concepts American-Made Energy CLASS Prize | U.S. Department of Energy

Climate specific design

	Water	Vapor	
\mathcal{L}	 Rain Capillary action (flowing up from ground) 	 Condensation Diffusion Transported via air leaks 	\bigcirc
	Air Flow	Hoot Transfor	
		Πεαι Πάπδιει	Sc

Climate specific design

Source: https://codes.iccsafe.org/content/IECC2021P1

Climate specific design

- Weather norms
 - Precipitation
 - Flooding and stormwater management
 - Tornadoes and high winds
 - Seismic events
 - Forest fires
- Outdoor air pollution levels
- Ambient noise

Source: https://www.energy.gov/eere/buildings/building-america-climate-specific-guidance

Linking back to sustainability

- Consider the building as a system and how to limit environmental impact during all phases of the building life cycle:
 - Proper siting
 - Energy use optimization
 - Water conservation and protection
 - Responsible material selection and use
 - High IEQ
 - Operational & Maintenance Practices
- Many resources and programs offer metrics to assess sustainability

Stretch break!

Please move your body or grab what you need to. This will be quick!

Project Planning

Overall approach

Getting to zero over time is a concept that ensures the correct tools are in place to address a building lifecycle event in a way that aligns with the school district's long-term energy and carbon reduction goals.

High-level process

Assembling a team

		Appendix B: Common Stakeholders and Their Roles in Carbon Neutrolit
Desision makers	School Business Officer or Official	Role
	Superintendent or Asst Superintendent	Stakeholders: School Boord M
Dianning ⁹ Dovelopment	Planning and Construction	Chief Business Officials (CBOs) School board members,
Planning & Development	Sustainability	the primary decision makers and financial managers for school districts and enders for school
	Kitchen and Nutrition Services	They routinely seek input from the community, students, staff, and a wide range of comstaff, and
	Facilities and Grounds	decision-making. Institutions for carbon neutrality, and final approval on construction district.
Support Staff	Transportation	Stakeholders: Capital Projects and Planning Dana in
	Maintenance and Operations	Department manages planning, design, construction and renovation of all facilities
	Information Technology	projects. They may make the final proposals or decisions on contraction
Occupanta	Teachers	members, and where and when energy and carbon are considered in the process
Occupants	Students	Stakeholders: Occupants: Dringing
	Communications Team	As the main occupants of schools, teachers, staff and students provide insight into device and parents
Community	PTA	operations and any issues that may be missed by stakeholders at the district level. They are champions for their own beauty and well-b
		Engage Find Stakeholders champions

Assessment Phase

Stock take

□ Understand current energy use:

- Utilities
- Meters
- Tracking mechanism

I. Introduction: School Energy Assessment (SEA) Form

This form is designed to help you walk through your school and collect specific information that will be useful for providing an assessment of the facility, capturing important building characteristics including heating, ventilation and air conditioning (HVAC) system details, and site energy use intensity (EUI). Collecting this information is an important first step in identifying potential retrofit opportunities for your

Existing Building Assessments

- Unique design features
- Daylighting opportunities, shading
- Air sealing and heat recovery ventilation
- Lighting, unique conditions
- HVAC condition and replacement schedule
- Portables lighting and HVAC condition
- BMS/occupancy sensors and patterns
- Opportunities in the kitchen

ASHRAE Audits

- Formal energy audit/assessment framework that can be used as an evaluation tool
- Three Levels, depending on where you are at:
 - Level 1: identify low-cost or no-cost opportunities for energy savings and areas of energy waste
 - Level 2: more detailed building characteristics survey, energy usage and cost analysis
 - Level 3: focus on the capital-intensive improvements identified during the level 2 analysis, including comprehensive energy models and a detailed report with project costs, expected savings, and a thorough life cycle cost analysis

Goal Setting: M&V

- How will project success be evaluated?
 - Energy savings
 - GHG reduction
 - EUI (based on energy consumption)
 - Occupant satisfaction
 - ROI
- Measurement & Verification is used to:
 - Determine baselines and estimated savings
 - Verify post-project performance of energy efficiency measures
 - Document ongoing performance

Goal Setting: M&V Plans

- Measurement & Verification (M&V) Plans outline how projects will be evaluated to ensure goals are achieved, including:
 - Baseline data
 - Documentation of all assumptions and data sources
 - Who, what, when of M&V activities
 - Details of engineering analysis (if applicable)
 - How energy and cost savings will be calculated
 - Reporting responsibilities, content, and format

- New Construction
- Major Renovation
- Equipment Replacement
- Operations and Retro-Commissioning
- Bond and Stakeholder Turnover

Major Renovation – 30-50 Years

HVAC Replacement – 15-20 Years

Lighting Retrofit – 5-7 Years

Bond Measures and Stakeholder Turnover

Loading order

- 1. Consider comfort & health first
 - Thermal, acoustic, lighting, views
- 2. Start with load reduction via efficiency measures
 - Daylighting & other envelope measures
 - Plug loads
 - Lighting loads
- 3. Look for additional load reduction using mechanical system selection decisions
 - HVAC equipment
- 4. Investigate EVs, PVs, and renewables

Retrofit Considerations

- Small renovations/repairs, using operating budget vs. large capital construction projects
- Consider unique conditions:
 - Planned retrofits
 - Behavior and preferences
 - Maintenance team needs
 - Peculiar local requirements/inspectors
 - Savings-to-investment ratio limitations

Source: CMTA, Inc.

New Construction Considerations

- Orientation and passive design
- Ensuring there is adequate site infrastructure (e.g., electric capacity)
- Selecting efficient, all-electric technologies
- Specify centralized controls
- Consider renewables, EVs, and battery integration
 - Make choices to enable these more easily in the future if not an option at present

The importance of commissioning

- Commissioning ensures the building is delivered according to the OPR
- A Commissioning Agent can train owners and occupants to properly use the system(s) for maximum efficiency
- Ongoing retrocommissioning ensures the system continues to provide expected performance
- Maintain records to track findings and provide a quality assurance mechanism

Operations

- Design with O&M in mind
- Set points and scheduling
- Develop O&M manual and program
 - Include equipment specifications
 - Coordinate with OPR
 - Energy evaluation
 - Benchmarking and metering is key
- Train building operators and occupants
- Conduct ongoing commissioning

Operations

- Meter and monitor energy performance
 - Provide real time energy use feedback
 - Smart energy meters can be relatively cheap, and also inform on power quality or used by IT at locations with significant IT infrastructure
 - Provide visual display and feedback for users
 - Education program for teachers, staff, and students
 - Use M&V, commissioning records, benchmarking to measure and report regularly
- Building automation system review
- Compare to predictions
- Report on progress toward goals

Discussion

- 1. What ways do you see building systems directly impacting your staff and students?
- 2. What aspects or systems of your building have been the most successful? Most challenging?
- 3. What building systems are you most interested in learning about in Live Session 2?

Shannon Oliver oli021294@adams12.org Reilly Loveland Falvey reilly@newbuildings.org